MAY/JUNE 2008

Question \& Model Answer

IN BASIC ELECTRICITY 194

QUESTION 1

1(a) Explain the following terms in relation to atomic structure
(i) Proton
(ii) Neutron
(iii) Electron
(b) Three cells of emf 1.5 volts with an internal resistance of 2Ω each are connected in series to an external resistance of 3Ω. Calculate
(i) total electronmotive force of the battery
(ii) current flowing through the 3Ω

Nucleus

a.i. The proton is the positively charged elementary particle that forms the nucleus of an atom. It is about 18836 times heavier than the electron. It is a stable unit charge of mass $1.67 \times 10^{-27} \mathrm{~kg}$. For a neutral atom the number of protons is always equal to the number of electron.
a(ii) The neutron is also an elementary particle in an atom, having zero charge and rest mass of $1.67492 \times 10^{-27} \mathrm{~kg}$. It is a constituent of the atomic nucleus of an atom. Both the neutron and the proton for ms the central massive part of the atom called the nucleus
a(iii) The Electron is the negatively charged elementary particles found on the shell or orbit of the atom. It has charge of 1.602192×10^{-19} coulombs and a mass of $9.10956 \times 10^{-31} \mathrm{~kg}$. The number of electrons is equal to the number of protons in a neutral atom.

1 b.

Total internal resistance,

$$
\begin{array}{llll}
\mathrm{e}, & & r_{\mathrm{T}} & =r_{1}+r_{2}+r_{2} \\
& & = & 2+2+2 \\
\therefore & r_{\mathrm{T}} & =6 \Omega
\end{array}
$$

(i) Total emf, $=\mathrm{E}_{1}+\mathrm{E}_{2}+\mathrm{E}_{3}$ (series)

$$
=\quad 15 .+1.5 .+1.5 .
$$

$$
=4.5 \mathrm{~V}
$$

total resistance in the circuit is

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}}= \mathrm{R}+\mathrm{r}_{\mathrm{T}} \\
& 3+6
\end{aligned}
$$

$$
=9 \Omega
$$

(ii) Current in the circuit $=$ the current through the 3Ω resistor

$$
\begin{array}{rll}
\mathrm{I} & =\frac{\mathrm{E}}{\mathrm{R}+\mathrm{r}} \\
& =\frac{4.5}{3+6} \quad= & \\
& =\frac{4.5}{9} \\
1 & =\frac{4.5}{9} \quad=0.50 \mathrm{~A} \\
\therefore \quad & I & = \\
\therefore= & =.50 \mathrm{~A}
\end{array}
$$

This is the current through the 3Ω resistor

QUESTION 2

2. (a) Define the following and give TWO examples of each
(i) Insulator
(ii) Conductor
(b) An orange of mass 50 g falls from rest from a height of 40 m . Calculate the kinetic energy of the orange after falling a distance of 25 m . (Neglect air resistance Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{S}^{2}$).

SOLUTION

2(a) (i) An insulator is a material that does not allow electrons to pass through it freely. It is therefore a non-conductor of heat and electricity. Examples are plastic, wood, paper, silk, wool, e.t.c.
(ii) A conductor is a material that allows charges to pass through it freely. It is therefore called conductor of heat and electricity.
Examples are metals, the human body, the earth, electrolytes, e.tc.

2(b)

$$
\begin{aligned}
& 40 m \text { s. } \\
& \mathrm{U}=\mathrm{O} \\
& v=g \\
& \mathrm{~g}=10 \mathrm{~ms}^{-2} \\
& \mathrm{~h}=40 \mathrm{~m} \\
& s=u t+\underline{1 g t^{2}} \\
& 2 \\
& S=O+\underline{1 g t^{2}} \\
& 2 \\
& t^{2}=\underline{2 s} \\
& t=\sqrt{g} \sqrt{\underline{2 s}}=\sqrt{\underline{2 \times 25}} \\
& =\begin{array}{ll}
& g \\
5
\end{array} \\
& \therefore \mathrm{t}=2.24 \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
\text { But } v & =U+g t \\
& =O+10 \times 2.24 \\
& =\underline{\underline{22.4 \mathrm{~ms}^{-1}}}
\end{aligned}
$$

OR

$$
\begin{aligned}
\mathrm{V}^{2} & =\mathrm{u}^{2}+2 \mathrm{gh} \\
\mathrm{~V}^{2} & =\mathrm{O}+2 \times 10 \times 25 \\
\mathrm{~V}^{2} & =500 \\
\mathrm{~V} & =\sqrt{500} \\
& =\underline{22.4 \mathrm{~ms}^{-1}} \\
\text { K.E. } & =\underline{1 \mathrm{mv}^{2}} \\
& =2 \\
& =\underline{1} \times 50 \times 10^{-3} \times(22.4)^{2} \\
& =25 \times 501.76 \times 10^{-3} \\
& =12544 \times 1 \mathrm{v}^{-3} \\
& =12.5 \mathrm{~J}
\end{aligned}
$$

Question3
3.
(a) What is a Resistor? Give its symbol
(b) List THREE types of Resistors
(c) Three resistors of values $15 \Omega, 20 \Omega$ and 30Ω are connected in series. If a voltmeter connected across the 20Ω resistor reads 90 V , calculate:
(i) total resistance of the circuit
(ii) current in the 30Ω resistor
(iii) Voltage drop in the 15Ω resistor
(iv) Power consumed by the circuit

SOLUTION
3(a) Resistor is an electrical component or electrical conductor which is constructed to have a precise or definite value of resistance. As an electrical component, it forms opposition to the free flow of electric current. Resistor is made with a length of resistance wire such as constantan and Nichrome. the symbol of a resistor is given as

OR $-M_{R}$
(b) Types of Resistors
(i) Wire-wound Resistor (Fixed Resistor)
(ii) Moulded -carbon Resistor
(iii) Rheostat/potentiometer/variable Resistor
(iv) High stability resistor (carob film Resistor
(c)

$$
\begin{aligned}
& \text { (i) Total Resistance } \mathrm{R}_{\mathrm{T}} \\
\mathrm{R}_{\mathrm{T}} & =\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \text { (series) } \\
= & 15+20+30 \\
= & \underline{65 \Omega}
\end{aligned}
$$

(ii) Current in the 30Ω resistor. The current across the three resistors $15 \Omega, 20 \Omega$ and 30Ω is the same because they are in series.
Current in the 20Ω resistor of voltage drop 90 V is

$$
\mathrm{I}=\frac{\mathrm{V}_{2}}{\mathrm{R}_{2}}=\frac{90}{20}=4.5 \mathrm{~A}
$$

$$
1=4.5 \mathrm{~A}
$$

\Longrightarrow Current in the 30Ω resistor is 4.5 A
(iii) Voltage drop, V_{1} in the 15Ω resistor

$$
\begin{aligned}
& V_{1}= \mathrm{IR}_{1}=4.5 \times 15 \\
& \underline{67.5 \mathrm{~V}}
\end{aligned}
$$

Similarly, the voltage drop in the 30Ω resistor is

$$
\begin{aligned}
\quad \mathrm{V}_{3}=\quad \mathrm{IR}_{3} & =4.5 \times 30 \quad=135 \mathrm{v} \\
\therefore \quad \text { Total p.d, } \quad \mathrm{V}_{\mathrm{T}} & =\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \\
& =67.5+90+135 \\
& =\underline{292.5 \mathrm{v}}
\end{aligned}
$$

(iv) Power consumed by the circuit is P

$$
\begin{aligned}
\mathrm{P} & =\mathrm{IV} \text { or } \mathrm{V}^{2} / \mathrm{R} \text { or } \quad \mathrm{I}^{2} \mathrm{R} \\
\mathrm{P} & =\mathrm{IV}=\quad 4.5 \times 292.5=1316.25 \mathrm{~W} \\
& =\mathrm{V}^{2} / \mathrm{R}=\frac{(292.5)^{2}}{65}=1316.25 \mathrm{~W} \\
& =\mathrm{I}^{2} \mathrm{R}=(4.5)^{2} \times 65=1316.25 \mathrm{~W}
\end{aligned}
$$

Question 4
4. (a) Define capacitance and state its unit of measurement
(b) Enumerate FOUR types of capacitors
(c) Three capacitors of values $5 \mu \mathrm{f}, 15 \mu \mathrm{f}$ and $30 \mu \mathrm{f}$ are connected in series. Another capacitor of value $50 \mu \mathrm{f}$ is connected in parallel with the series group across a 200 V d.c. source. Calculate.
(i) total capacitance of the series group
(ii) total capacitance of the circuit
(iii) total charge stored in the capacitor
(iv) energy stored by the $50 \mu \mathrm{f}$ capacitor

Solution
4a. The ability of a capacitor to store electric charges is known as capacitance. It can also be defined as the ratio of the amount of electricity (charge), Q transferred from one plate to the other, to the potential difference produced between the plates. The symbol is C and it is given as $C=Q / V$
The unit of measurement of the capacitance is Farad F (coulomb per volt).

4(b) Types of Capacitors
(i) Paper capacitor
(ii) Electrolytic capacitor
(iii) Ceramic capacitor
(iv) Silver mica capacitor
(v) Plyester capacitor \& poly carbonate capacitor
(vi) Tantalum capacitor
(vii) Polystyrene capacitor

4(c)

(i) Total capacitor in series group
$\frac{1}{\mathrm{C}_{\mathrm{s}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}$
$=\frac{6+2+1}{30}$
$=\quad \underline{9}$
30
$\Longrightarrow C_{s}=30$
$9=3.33$
$\therefore \quad \mathrm{C}_{\mathrm{s}}=$ 3.33uf
(ii) Total capacitance of the circuit

$$
\begin{aligned}
\mathrm{C}_{\mathrm{T}} & =\mathrm{C}_{\mathrm{s}}+\quad \mathrm{C} \\
& =3.33+50 \\
& \underline{53.33} \boldsymbol{\mu f}
\end{aligned}
$$

(iii) Total charge stored in the capacitor

$$
\begin{aligned}
Q_{T} & =C_{T} V \\
& =53.33 \times 200 \\
& =\underline{\underline{1066 \mu}} \mathrm{C} \text { or } 1066 \times 10^{-6} \text { or } 1.07 \times 10^{-2} \mathrm{C}
\end{aligned}
$$

(iv) Energy stored by the $50 \mu \mathrm{f}$ capacitor.

$$
\begin{aligned}
\mathrm{W} & =1 / 2 \mathrm{CV}^{2} \\
& =1 / 2 \times 50 \mu \mathrm{f} \times(200)^{2} \\
& =25 \times 40000 \times 10^{-6} \mathrm{~J} \\
& =1000000 \times 10^{-6} \mathrm{~J}=1.0 \mathrm{~J}
\end{aligned}
$$

Question 5
5 (a) Define the following terms in relation to alternating current and state their
symbols
(i) inductive reactance
(ii) impedance
(b) A $200 \mu \mathrm{f}$ capacitor is connected in series with a 60Ω resistor. The combinations is connected to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate:
(i) capacitive reactance of the capacitor
(ii) inpendance of the circuit
(iii) current
(iv) power factor

Solution
$5 \mathrm{a}(\mathrm{i})$ Inductive Reactance is the opposition to alternating current due to the presence of an inductor in the circuit. It is given as X_{L} and can be obtained from the relationship that, $X_{L}=2 \pi f L$. The symbol is X_{L} and its unit is ohms.
a(ii) Impedance is the effective or total opposition to alternating current due to the presence of an inductance coil (an inductor), the capacitor and a resistor in an A.C. circuit.
The impedance is represented with a symbol Z and its unit is ohms.

5(b)

(i) Capacitive reactance of the capacitor

$$
X c=\frac{1}{2} \pi f c
$$

$$
=\frac{1 \times 10^{6}}{2 \times 3.142 \times 50 \times 200}
$$

$$
=\frac{10^{6}}{62840}
$$

$$
=15.91 \Omega
$$

(ii) Impedance of the circuit

$$
\begin{aligned}
Z & =\sqrt{R^{2}+(X c)^{2}} \\
& =\sqrt{60^{2}}+(15.91)^{2} \\
& =\sqrt{60^{2}}+(15.91)^{2} \\
& =\sqrt{3600}+253.13 \\
& =\sqrt{3853.13} \\
& =\underline{62.1 \Omega}
\end{aligned}
$$

(iii) Current, I

$$
\mathrm{I}=\frac{\mathrm{V}}{2}=\frac{200}{62.1}=3.22
$$

$$
\therefore \quad 1=3.22 \mathrm{~A}
$$

(iv) Power factor

$$
\begin{aligned}
& \mathrm{pf}=\mathrm{R}=\frac{60}{62.1} \\
&=\mathrm{Z} \\
& 0.97 \text { leading } .
\end{aligned}
$$

Question 6

Draw the following symbols to British Standards (BS):
(i)

Energy Meter

(ii)

(iii)

(iv)
 Earth
(v)

Transformer or
(vi)

Variable Inductance

Diode
(viii) $\rightarrow \pi / \pi-\pi / 2$
(ix) $-|1---|1---| |-$ Battery
(x)

