NATIONAL BUSINESS AND TECHNICAL EXAMINATIONS BOARD MAY/JUNE 2005 NBC/NTC EXAMINATION **MATHEMATICS**

- Solve for x in $8^{3x} \times 8^{-1} = 32$ 1(a)
- Simplifying without using tables, $\frac{\log 27}{\log 3}$ (b)
- $\frac{\text{Solution}}{2^{3(3x)} x \ 2^{3(-1)}} = 2^5$ (a) \Rightarrow 3(3x) - 3 = 5 9x - 3 = 5 $\therefore x = 8/9$

(b)
$$\frac{\log 27}{\log 3} = \frac{\log 3^3}{\log 3} = \frac{3\log 3}{\log 3} = 3$$

- 2(a)
- The 6th term of a G.P is 1215. If the common ratio is 3; find its 3rd term. ABC is a triangle with BC = 8.4cm, $\angle ADC = 90^{\circ}$ and area 40.16cm². Find /AD/. (b)

(a)
$$\frac{\text{Solution}}{\text{T}_6 = \text{ar}^{n-1}} \implies a(3)^5 = 1215$$
$$a = \frac{1215}{243} = 5$$
$$\therefore 3^{\text{rd}} \text{ term} = 5 \times 3^2 = 45$$

Area of a triangle = $\frac{1}{2} \times 8.4 \times \frac{AD}{}$ (b) =40.16 cm²

$$\therefore /AD = \frac{40.16 \text{ x } 2}{8.4 \text{ x } 1}$$

= 9.56cm
3(a) Simplify $\frac{0.0054 \times 8.19}{0.000243}$, leaving your answer in standard form.

(b) A length of 8.85m is increased to 9.37m. Calculate the increase.

<u>Solution</u>

(a) $\frac{54 \times 10^{-3} \times 819 \times 10^{-2}}{243 \times 10^{-5}}$ = 1.82 x 10² or <u>0.054 x 819</u> = <u>0.44226</u> = 182 <u>0.00243</u> = <u>0.00243</u> = 1.82 X 10² (b) increase in length = (9.37 - 8.85)m = 0.52m

percentage increase = $\frac{0.52}{8.85}$ x 100

$$= 5.876\% = 5.88\%$$
 approx.

4. 65 of the workers in a certain company in Lagos were interviewed about the means of transportation to work on a particular day. Each of them used one or more of the means shown on the Venn diagram below.

Given that 37 workers used Bike and 20 used Bus, find

- (a) x
- (b) the number of workers who used cars only

4(a) $\frac{\text{Solution}}{x + x + 5} + 8 = 37$ 2x = 24

∴ x =12

- (b) y = 20 (5+8+3) = 4n (Bike \cup Bus) = 12+12+5+8+3+4 = 44 n (cars only) = 65-44 = 21
- 5. The centre of the circle ABC is O. If its radius is 8cm and < ACB = 40°, Calculate the length of the
 (a) Chord AB
 (b) Perpendicular OM

Solution $< AOB = 2 < ABC = 2 \times 40^{\circ} = 80^{\circ}$ $< BOM = \frac{1}{2} \text{ of } 80^{\circ} = 40^{\circ}$ Considering triangle OMB,

> $/MB/ = 8 \sin 40^{\circ}$ or 8 Cos 50[°] = 5.142cm

Length of the chord $AB = 2/MB/= 2 \times 5.142$ = 10.28cm = 10.3cm approx (b) /OM/= 8 Cos 40° or 8Sin50° =6.128cm = 6.13cm = 6.1cm

<u>ALITER</u>: Using Pythagoras' rule $OM = \sqrt{(OB)^2 - (MB)^2} = 6.1 \text{ cm}$

6(a) Find the value of a and b in the figure below

(b) Five years ago, a father was twice as old as his son. In 4 years' time, the sum of their ages will be 78. Find their present ages.

<u>Solution(a)</u> $b = 180^{\circ} - 120^{\circ} = 60^{\circ}$ (opposite angles in cyclic quad are supplementary) Considering ΔACD , a + b + 80 ° =180 ° (∠s in a Δ) ∴ a = 180 ° - 80 ° - 60 ° = 40 °

- (b) Let the present ages be son, x yrs, father y yrs, then 5 years ago, we have y-5 = 2(x-5) $\Rightarrow 2x - y = 5$ (1) in 4 years' time, we have (x+4) + (y+4) = 78 $\Rightarrow x+y = 70$ (2) From (1) and (2), we have, x = 25 and y = 45 \therefore their present ages are son = 25 yrs, father = 45 years
- (a) <u>ALITER</u>

5 year ago if son is y year's old father was 2y years old. In 4 years time, son will be (y+5+4) yrs father = (2y+5+4) yrs which gives y + 9 + 2y + 8 = 78; y = 20 the present ages are y + 5 = 25yrs and 2y + 5 = 45yrs for the son and father respectively.

- 7. The bearings of points P and Q from 045° and 120° respectively. If the distance AP is 80km and AQ is 50km, calculate the:
 - (a) distance between P and Q to 3 significant figures
 - (b) bearing of Q from P, to the nearest degree.
 - (c) how far east of A is Q?

Solution

(a)

Correct diagram with at least three of 50km, 80km, 45 $^{\circ}$, 60 $^{\circ}$ or 120 $^{\circ}$ shown <PAQ = 75 $^{\circ}$

$$(PQ)^2 = 80^2 + 50^2 - (50) \text{ Cos75}^\circ = 6829.6$$

 $\therefore PQ = \sqrt{6829.6} = 82.6 \text{ km}$

7(b) $\frac{\text{Solution}}{\sin < \text{APQ}} = \frac{50 \text{ x sin 75}}{82.6}^{\circ} = 0.5847$ $< \text{APQ} = \sin^{-1} 0.5847 = 35.78^{\circ}$ $< \text{QPN} = 45^{\circ} - 35.78^{\circ} = 9.22^{\circ}$ The bearing of Q from P = $180^{\circ} + 9.22^{\circ}$ $= 189^{\circ} \text{ (to the nearest degree)}$ $\therefore < \text{QAM} = 30^{\circ}$

- (c) A is $50 \times \cos 30^\circ = 43.3$ km east of Q
- 8(a) The table below shows the scores of a group of 40 students in a test.

Score (x)	1	2	3	4	5	6	7	8	9	10
Frequency (f)	3	4	5	7	8	6	3	2	1	1

Find the (i) mode, (ii) median and (iii) mean

- (b) The 2^{nd} and 4^{th} terms of a G.P. are 10 and 40 respectively. Find the
 - (i) common ratio
 - (ii) first term
 - (iii) 8^{th} term of the series

Solution

(a) (i) mode = 5
(ii) median=
$$5 + 5 = 5$$

(iii) $\Sigma fx = 3 + 8 + 15 + 28 + 40 + 36 + 21 + 16 + 9 + 10$
 $= 186$
mean = $186 = 4.65$
(b) $ar^{2-1} = 10 = ar = 10$
 $ar^{4-1} = 40 = ar^3 = 40$
 $\Rightarrow r^2 = \frac{40}{10} = 4$

(i)
$$\therefore$$
 r = ± 2 , r = 2 or -2

(ii) Hence $2a = \pm 10 \implies a = \pm 5$

(iii)
$$T_8 = \pm 5 \times 2^7 = 640$$

- 9 Using a ruler and a pair of compasses only construct:
- (a) A triangle ABC such that /AB/=9cm, $\angle ABC = 60^{\circ}$ and $\angle ACB = 45^{\circ}$.
- (b) (i) Construct the locus l₁ of points 4.5cm from A.
 (ii) Construct the locus l₂ of points equidistant from B and C to intersect l₁ at x₁ and x₂ measure /x₁x₂/.

Solution

(a) Drawing a side 9cm long constructing angle 60° , angle 45° measuring angle BAC = 76° completing the triangle ABC.

- (b) (i) Constructing l₁ 4.5cm from A
 (ii) Constructing l₂ of points equidistant from B and C to intersect l₁ at x₁ and x₂
 measuring /x₁x₂/ = 8.5cm; (±0.1cm) or its equivalent.
- 10(a) A bucket is 28cm in diameter at the top, 18cm in diameter at the bottom and 20cm deep. Find the capacity, in litres, of the bucket (take $\pi = 3.142$)
 - (b) The hypotenuse of a right angled triangle is 17cm and one of the angles is 43^o, find the
 (i) third angle
 - (ii) side opposite the smallest angle.

Solution

(a) Let the height of the smaller cone be h cm then, we have $\frac{h}{20+h} = \frac{9}{14}$

 $\Rightarrow 14h = 180+9h$ $\therefore h = 36$

Volume of the small cone = $\frac{1}{3} \times 3.142 \times 9^2 \times 36$ = 3054.02cm³ Volume of the big cone = $\frac{1}{3} \times 3.142 \times 14^2 \times 56$ = 11495.53cm³ Volume of the bucket in litres = 11495.53 - 3054.02 = 8441.51cm³ Capacity of the bucket in litres = 8.44 litres or 8.4 litres. We can also get the volume if we use $\pi(r^2H - r^2h)$ 3 Substituting for R, H, r and h, we get 8.44 litres 3rd angle Ø = 180°- (90°+43°)=47'

AC is opposite the smallest angle[•] Hence $AC = 17 \text{ x } \sin 43^{\circ}$ or $AC = 17 \text{ x } \cos 47^{\circ}$ = 11.594 cmor = 11.59 cm

11(a) The sum to nth term of an AP is given by $S = \underline{n} [a + (n-1) d]$, where a = first term d = common difference (i) make d the subject of the formula

(ii) Hence calculate the common difference of an AP whose sum is 338, n = 13 and a = 5.

(b) The angles of a polygon are $(x-10)^0$, x^o , x^o , $(x+20)^o$ and $(x+30)^o$. Find the value of x^0 .

 $\frac{\text{Solution}}{S = \underline{n}(a+(n-1)d)}$

2 Removing the fraction and brackets to get $2s = na + n^2d - nd$ Isolating d, we get $d(n^2 - n) = 2s - na$ $\therefore d = \frac{2s - na}{n^2 - n}$ (ii) $d = \frac{2s - na}{n^2 - n} = \frac{2(338) - 13(5)}{13^2 - 13}$ $=\frac{611}{156}=3.92$ The polygon has 5 sides sum of interior angles = $3 \times 180^{\circ} = 540^{\circ}$ $(x-10)^{\circ} + x^{\circ} + x^{\circ} + (x+20)^{\circ} + (x+30)^{\circ} = 540^{\circ}$ $5x + 40^{\circ} = 540^{\circ}$ $5x = 500^{\circ}$ $\therefore x = 100^{\circ}$ 12(a) An article costing \$32.50 is sold for a gain of 13¹/₂. Find the selling price. (b) Find the simple interest on 4500.00 in $2\frac{1}{2}$ years at 4% per annum. (c) A businessman borrowed ₩200,000 from a bank for 3 years at 5% compound interest. (i) Calculate the interest on the loan at the end of the period. (ii) If he repays ₩230,000 at the end of the 3 years, how much does he still owe? Solution Cost price of the article : 100% = \$32.50Selling price of the article $113\frac{1}{2}$ % = 113.5×32.50 100 = ₩36.89 $S.I = PTR = 4500 \times 5 \times 4$ 100 100 x 2 =₩450.00 Interest at the end of 1^{st} year = $4200,000 \times 1 \times 5$ 100 = ₩10,000.00 Interest at the end of 2^{nd} year = $\underline{210,000 \times 1 \times 5}$ 100 = 10,500.00Interest at the end of 3^{rd} year = $4220,500 \times 1 \times 5$ 100 =₩11,025.00 (i) Total interest owed at the end of 3^{rd} year

(b)

(a)

(b)

(c)

$$= \$200,000 \left(1 + \frac{5}{100}\right)^3 = \$231,525.00$$

Total interest = ₩ (231,525 – 200,000) = ₩31,525.00

ALITER

- (i) Total interest = $\Re(10,000 + 10,500 + 11,025) = \Re 31,525.00$
- (ii) Amount still owed = (231,525 230,000)

- 13(a) A trader allows a discount of $33\frac{1}{3}$ % on his marked prices. What should be the marked prices of article he wishes to receive \$500.00?
 - (b) The prices of kerosene per litre on the first week of each of the 12 months of the year are as given in the table below.

Month	Jan.	Feb.	March	April	May	June	July	Aug.	Sept	Oct	Nov	Dec.
Price	18	21	25	30	40	52	48	50	55	43	26	18

Find the three month moving averages for the period.

Solution

- (a) Selling price less discount: $66 \frac{2}{3} = \frac{100}{8500}$ Marked price: $100\% = \frac{100}{662} \times 500$ $66 \frac{2}{3} = 749.96 = \frac{100}{750}$ approx (b) Moving averages: $\frac{18 + 21 + 25}{3} = 21.33$ $\frac{21 + 25 + 30}{3} = 25.33, \frac{25 + 30 + 40}{3} = 31.67$ $\frac{30 + 40 + 52}{3} = 40.67, \frac{40 + 52 + 48}{3} = 46.67$ $\frac{52 + 48 + 50}{3} = 50.00, \frac{48 + 50 + 55}{3} = 51$ $\frac{50 + 55 + 43}{3} = 49.33, \frac{55 + 43 + 26}{3} = 41.33$ $\frac{43 + 26 + 18}{3} = 29.00$
- 14(a) A man's salary is 298,886.40 per annum. Before receiving his salary, the employer makes the following deductions of the salary less personal allowance

Income Tax1%, Federal Housing Scheme21/2%, and If his annual personal allowances is ₩108,110.40 Calculate: his monthly income tax (i) the net monthly take home pay. (ii) (b) A bankrupt's assets realize ₩5000.00 and his liabilities are ₩8000.00 (i) What dividend will he pay? (ii) How much will be paid to a creditor for \$600.00?Solution Salary – Personal allowances = \clubsuit (298,886.40 – 108,110.40) (a) = ₩190,776.00 (i) Monthly income tax = $190,776 \times 1$ 100 12 = ₩158.98 (ii) Gross monthly salary = \$298,886.412 = №24,907.20 monthly deductions: FHS: 2% of ₩24,907.20 =₩ 622.68 monthly union due = 2% of \$24,907.20= ₩498.14 monthly tax deduction: 1% of ₩24907.21 = №249.07 monthly total deductions = \clubsuit (622.68 + 498.14 + 249.07) = ₩1369.89 Net monthly pay = (24,907.40 - 1369.89)= ₩23,537.31 (b) (i) Dividend = $\$5,000 \ge 100$ k

- (i) Dividend = $\frac{1000}{100} \times 1000$ = 63k in $\frac{1}{100}$ (ii) To a creditor for $\frac{1}{600}$ he pays $\frac{63}{100} \times \frac{1}{100}$ = $\frac{1}{8378.00}$
- 15(a) Find the weighted mean of 15,20,25,30, if they are assigned weightings of 2,1,3,4 respectively.

(b) A man bought 23 crates of bottled drink at \$310.00 per crate. There were 24 bottles per crate and each bottle was sold for ₩15. If two bottles per crate got broken during sales, calculate the following:

- (i)
- cost price of the 23 crates percentage profit per crate. (ii)

(a) Weighted mean =
$$(2 \times 15) + (1 \times 20) + (3 \times 25) + (4 \times 30)$$

 $2 + 1 + 3 + 4$
 $= \frac{275}{10} = 27.5$
(b) (i) Cost price of 23 crates = 23 x $\bigstar 310$
 $= \bigstar 7130.00$
No of bottles sold in a crate = 22
Selling price of a crate = 22 x $\bigstar 15 = \bigstar 310.00$
Profit on a crate = $\bigstar 330.00 - \bigstar 310.00$
 $= \bigstar 20$
(ii) Percentage profit per crate
 $= \frac{20}{310} \times 100$
 $= 6.45\% = 6.5\%$ approx.